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explosion, and that of the heat source may be obtained as self-similar solutions of the 
second kind if defining parameters of the pre-self-similar statement of the problem are 

“unluckily” selected. The possibility of obtaining these solutions in the form of self- 
similar solutions of the first kind is related to the selection of energy E and total heat 

Q as the determining parameters which, by virtue of the corresponding integral conserva- 
tion laws. do not change in time). 

In conclusion the authors wish to thank V. M. Entov for his attention to this work. 
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1. We consider the problem of steady filtration in a thin layer in the presence of a 
single crack. 

The flow in a crack which can be regarded as a piecewise-smooth line I in studying 
the external filtration field is describable by means of the equations of a lubricant layer, 
i.e. the pressure can be assumed constant within each cross section but different at each 

one ofthem; p-(s) = p’(s) = p(s) ; the fluid velocity u,, inside the crack can be assumed 
to have a parabolic profile, n2 - 2k - h2 a~ 

llg= - 
21’ as (1.1) 

Here n is the normal to the crack axis, 2h (~1 is the width of the crack at the cross 

section M (s), p is the viscosity of the fluid, and k is the permeability of the porous 

medium. 
The volume rate of the fluid flow through the cross section M (s) is given by 

I, 

Q (s) = $ u,,dn = 2h ‘“;,’ “k) 2 (1.2) 



From the condition of conservation of the mass of filtered fluid in each crack element 
&fM’ we obtain the following condition along the crack: 

dp’- i3p- II aQ -7------T---= . . ..“-..A 
dn on k 8s 

(2.3) 

Making use of Eq. (1. a), we can rewrite this condition as 

Let us introduce the complex potential 

W (zj = p t_ P& Q---+/i* 

Here 9 is the stream function, Integrating over s, we obtain 

Condition (1.4) arid the analysis to follow are also valid for isothermal gas filtration 
provided we mplace the pressure p by its square. 

The author of [I] obtained a condition of the (1.5) type on the basis of other consider- 
ations. 

2, Let us consider the case where the crack axis coincides with the segment I’ , 
i 
6 zz Z@S, “* zz &?@, 14 < 1 

FoIlowing [l& we shall attempt to find the complex potential in the form 

Here &’ (z) is some analytic function whose point singularities do not lie on the crack; 
o (t) is the required function which satisfies the Halder condition at the segment I’. 

Applying the Sochocki formulas @] to the function W (z) as z + 5 E I‘ and making 
use of boundary condition (1.5) for cg = 0 [l], we obtain a functional equation for deter- 
mining the discharge function, 

10 (s) - ** .- q-, Q (- 1) = w (1) -= 0 

The inverse problem (that of finding the function d (3 on the basis of a given function 
w (sf and using it to construct the corresponding flow) is always solvabIe, The case 
0 (sj=oo(l- sa) is investigated in [I]. 

We shall solve the direct problem assuming the existence of the derivative w ’ (s) 
which satisfies the Holder condition in the interval (-1, 1). Under this assumption and 

with allowance for the conditions u (- 1) = o(l) ~0, we can rewrite Eq. (5.2) as 

o(s) O’(G) do 
2’a8(s)- I et--.-s c =2nReF’(5)z0, Isl<i 

-1 
(2.3) 

The function CO fs) is therefore that solution of the integrodifferential equation (2.3) 
which satisfies the homogeneous boundary conditions, This equation is the familiar 
Prandtl equation of the theory of wings of finite span investigated in [3-51. 

In the special case oi the function 8 (sf = _6$ - $2 i p (5) . where p 4s) is an even 

anaIytic positive-valued function on the segment f- 1. I]. Eq. (if. 3) is equivalent to 
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the integral equation [4] 

(2.4) 

2a 
Ko(s, a)=- y c 

* cos W (1) - 5 (4J P (a) - p(t) dt 

; 
fl cl_-t 

If cos 5 (I) # 0, then we make use of the conditions o (--1) = o (i) = 0 to obtain 
the Fredholm integral equation 

1 

o(s)- 
s 

K (s, a) o (a) da = g (s) (2.5) 
-1 

For cos 5 (i) = 0 we obtain the system 

0 (3) = 0 (0) cos 0 (s) -i- _ir Ro(s, a) o.(s) + go fs) (2.7) 

1 

s 
ao(l,Q)O(iS)do+go(i)=0 

-1 

The undetermined constant appearing in the first equation of (‘2.7) must generally be 
determined from the second equations of (2.7). If this constant is not determined from 

the latter equation, then it must be chosen in such a way that the solution of the first 

equation of system (2.7) is the solution of Eq. (2.3). 
The kernels of Eqs. (2.6). (P. 7) become degenerate if p (s) = fm / Ei (8) is a 

rational function. The required function o (6) can then be expressed explicitly in quad- 

ratures 141. 

9, Let 6 (s) = b. vm, be= const; then p (s)= con&; K, (s, u)= 0. From 
(2.4) we obtain 

o (s) ==a (0) cos e (s) + go (s), e (s) = II arcsins, x= 262 I b. (3-i) 

Formula (3.1) enables us to construct the solution of Eq. (2.3) in explicit form for any 
function F’ (2). 

For example, if P’ (z) = V, then ReP’ (5) z,, = Vu co@, and some simple operations 

bring us to the solution 
w (s) = 

2va cos p 

i+X 
vi.-sa (3.2) 

which is also valid in the case cos 0 (1) = cos (an / b,) = 0. 
Formulas (8.1) and (3. ‘2) yield the following expression for the complex potential 

w (2) : 
(3.3) 

In the case 6 = 0 we can take the limit as z -, x f 80 to obtain the following expres- 
sion for the complex velocity: 
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dW” 
-==*_j$= 

[ v-v(l+~)-‘[I~i”(aa-~~)-“‘~ (Isl<a) 

dz \v -v(l+~)-‘jl-~f~((z~-u~)-*~‘] (/zf>a) 
(3.4) 

From the expression for v* in (3.4) we see that the crack absorbs the layer fluid for 
- e < 5 < 0 and supplies fluid to the layer for 0 < z 4 (X . 

If F (2) = A In (2 - b), b c f’, then the function go (a) in formula( 3.1) for o (s)be- 
comes s 

go(s)= -2 s Azo sinfB(t)--R(s)]He- 
zot - b dt + 

0 

+L ’ ww-e(s)] dt ’ m Re AZ@ da 
3-t c 

Ii s 1/1 _l 5-t - 205 - b 

For cos 6 (s) # 0 we have 

w (s) = go (a) - 
go (1) cos 9 (a) 

~0sefi) 

(3.5) 

(3.6) 

Contour integration yields the following expression for the discharge q of a borehole 
at the point z = b : 

I 

6J (4 
@l(S) = yj- 

-1 
(3.7) 

Here p. is the pressure at the working contour of a borehole of radius r. ; p,is the 
pressure at a circular feed contour of radius r+ with its center at the point z= b. 

4. In the more general case where the function 116 (s) is integrable on the segment 

(-1, l] and where d (a) > 0 for 1 s 1 < 1, we can express the required function o (a) in 
the form S 1 

O(P)- 
c o’ (ci) dG = 

5 x (s, 4 0’ (a) da, x (5 4 = 
1 (cds) 

-41 0 (a>91 
(4.i) 

-1 

Making use of expression (4.1). we can rewrite (2.3) as 
1 1 

1 

i 

6)' (5) dcr a 

xi- 
p=- x (s, a) O’ (CT) ds - F1 (s) (‘1.2) 

‘1 
6-S c 

_.^ 8 (8) _I1 

F1 (s) = Rep (5) zo, I s I < 1 

Assuming that the right side of Eq. (4.2) is known, we make use of the inversion for- 

mula for an integral with a Cauchy kernel to obtain r2, 61 

The above assumptions concerning the functions o’ (o) and b (T) in the iterated inte- 

gral enable us to alter the order of integration [6]. 
We have 

W’(S) = ,&% [lt Kl (s, 6) 0’ (c) dc + fo is)] 3 Is/<1 (4.4) 
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From (4.5) we see that the kernel K, (s, o) has a logarithmic singularity for a= o 
1[2, 61. Introducing the notation o’ (s) = o 0’ (s) / v/1 - s2, we can rewrite Eq. (4.4) as 

l Kl (s, a) 
00’ (s) = -“I r/f--/-$ a (5) ffci + fo (s), c I R I < 1 (4.6) 

In order to eliminate the “fixed” infinity at the ends of the segment [-I., 11, we make 
the substitution of variables u = sinul, s = sins, (4.7) 

Denoting oIO Is (sr)] by o ,,’ (slf, we find from (4.6), (4.7) that 
Z’2 

00’ (s,) = c K (Sl, al) coo’ (as) da1 + f (a). J Sl I < x/2 (4.8) 

1; 
--a,& 

We can proceed in the same way in the case of a fixed integrable infinity of an order 

a< 1. 
By virtue of the foregoing statements, Eq. (4.8) has a logarithmic (movable) singularity 

only and is therefore a quasi-Fredholm integral equation. The Fredholm alternative, the 

theorem on solvability conditions, and the other results of the Fredholm theory are valid 
for this equation (after the first iteration). 

The author is grateful to M. G. Alishaev, I. V. Tsenov and G. A. Magomedov for their 
comments and useful suggestions. 
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